201 resultados para Molecular Medicine

em QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular techniques have a key role to play in laboratory and clinical haematology. Restriction enzymes allow nucleic acids to be reduced in size for subsequent analysis. In addition they allow selection of specific DNA or RNA sequences for cloning into bacterial plasmids. These plasmids are naturally occuring DNA molecules which reside in bacterial cells. They can be manipulated to act as vehicles or carriers for biologically and medically important genes, allowing the production of large amounts of cloned material for research purposes or to aid in the production of medically important recombinant molecules such as insulin. As acquired or inherited genetic changes are implicated in a wide range of haematological diseases, it is necessary to have highly specific and sensitive assays to detect these mutations. Most of these techniques rely on nucleic acid hybridisation, benefitting from the ability of DNA or RNA to bind tighly to complimentary bases in the nucleic acid structure. Production of artificial DNA molecules called probes permits nucleic acid hybridiation assays to be performed, using the techniques of southern blotting or dot blot analysis. In addition the base composition of any gene or region of DNA can be determined using DNA sequencing technology. The advent of the polymerase chain reaction (PCR) has revolutionised all aspects of medicine, but has particular relevance in haematology where easy access to biopsy material provides a wealth of material for analysis. PCR permits quick and reliable manipulation of sample material and its ability to be automated makes it an ideal tool for use in the haematology laboratory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular Medicine and Molecular Pathology are integral parts of Haematology as we enter the new millennium. Their origins can be linked to fundamental developments in the basic sciences, particularly genetics, chemistry and biochemistry. The structure of DNA and the genetic code that it encrypts are the critical starting points to our understanding of these new disciplines. The genetic alphabet is a simple one, consisting of just 4 letters, buts its influence is crucial to human development and differentiation. The concept of a gene is not a new one but the Human Genome Project (a joint world-wide effort to characterise our entire genetic make-up) is providing an invaluable understanding of how genes function in normal cellular processes and pinpointing how disruption of these processes can lead to disease. Transcription and translation are the key events by which our genotype is converted to our phenotype (via a messenger RNA intermediate), producing the myriad proteins and enzymes which populate the cellular factory of our body. Unlike the bacterial or prokaryotic genome, the human genome contains a large amount of non coding DNA (less than 1% of our genome codes for proteins), and our genes are interrupted, with the coding regions or exons separated by non coding introns. Precise removal of the intronic material after transcription (though a process called splicing) is critical for efficient translation to occur. Incorrect splicing can lead to the generation of mutant proteins, which can have a dilaterious effect on the phenotype of the individual. Thus the 100,000-200,000 genes which are present in each cell in our body have a defined control mechanism permitting efficient and appropriate expression of proteins and enzymes and yet a single base change in just one of those genes can lead to diseases such as haemophilia or fanconis anaemia.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Developing effective treatments for neurodegenerative diseases is one of the greatest medical challenges of the 21st century. Although many of these clinical entities have been recognized for more than a hundred years, it is only during the past twenty years that the molecular events that precipitate disease have begun to be understood. Protein aggregation is a common feature of many neurodegenerative diseases, and it is assumed that the aggregation process plays a central role in pathogenesis. In this process, one molecule (monomer) of a soluble protein interacts with other monomers of the same protein to form dimers, oligomers, and polymers. Conformation changes in three-dimensional structure of the protein, especially the formation of beta-strands, often accompany the process. Eventually, as the size of the aggregates increases, they may precipitate as insoluble amyloid fibrils, in which the structure is stabilized by the beta-strands interacting within a beta-sheet. In this review, we discuss this theme as it relates to the two most common neurodegenerative conditions-Alzheimer's and Parkinson's diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A robust vaginal immune response is considered essential for an effective prophylactic vaccine that prevents transmission of HIV and other sexually acquired diseases. Considerable attention has recently focused on the potential of vaginally administered vaccines as a means to induce such local immunity. However, the potential for vaccination at this site remains in doubt as the vaginal mucosa is generally considered to have low immune inductive potential. In the current study, we explored for the first time the use of a quick release, freeze-dried, solid dosage system for practical vaginal administration of a protein antigen. These solid dosage forms overcome the common problem associated with leakage and poor retention of vaginally administered antigen solutions. Mice were immunized vaginally with H4A, an HIV gp41 envelope based recombinant protein, using quick release, freeze-dried solid rods, and the immune responses compared to a control group immunized via subcutaneous H4A injection. Vaginally immunized mice failed to elicit robust immune responses. Our detailed investigations, involving cytokine analysis, the stability of H4A in mouse cervicovaginal lavage, and elucidation of the state of H4A protein in the immediate-release dosage form, revealed that antigen instability in vaginal fluid, the state of the antigen in the dosage form, and the cytokine profile induced are all likely to have contributed to the observed lack of immunogenicity. These are important factors affecting vaginal immunization and provide a rational basis for explaining the typically poor and variable elicitation of immunity at this site, despite the presence of immune responsive cells within the vaginal mucosae. In future mucosal vaccine studies, a more explicit focus on antigen stability in the dosage form and the immune potential of available antigen-responsive cells is recommended. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

During the past century, several epidemics of human African trypanosomiasis, a deadly disease caused by the protist Trypanosoma brucei, have afflicted sub-Saharan Africa. Over 10 000 new victims are reported each year, with hundreds of thousands more at risk. As current drug treatments are either highly toxic or ineffective, novel trypanocides are urgently needed. The T. brucei galactose synthesis pathway is one potential therapeutic target. Although galactose is essential for T. brucei survival, the parasite lacks the transporters required to intake galactose from the environment. UDP-galactose 4'-epimerase (TbGalE) is responsible for the epimerization of UDP-glucose to UDP-galactose and is therefore of great interest to medicinal chemists. Using molecular dynamics simulations, we investigate the atomistic motions of TbGalE in both the apo and holo states. The sampled conformations and protein dynamics depend not only on the presence of a UDP-sugar ligand, but also on the chirality of the UDP-sugar C4 atom. This dependence provides important insights into TbGalE function and may help guide future computer-aided drug discovery efforts targeting this protein.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A vast body of research in breast cancer prognostication has accumulated. Yet despite this, patients within current prognostic categories may have significantly different outcomes. There is a need to more accurately divide those cancer types associated with an excellent prognosis from those requiring more aggressive therapy. Gene expression array studies have revealed the numerous molecular breast cancer subtypes that are associated with differing outcomes. Furthermore, as next generation technologies evolve and further reveal the complexities of breast cancer, it is likely that existing prognostic approaches will become progressively refined. Future prognostication in breast cancer requires a morphomolecular, multifaceted approach involving the assessment of anatomical disease extent and levels of protein, DNA and RNA expression. One of the major challenges in prognostication will be the integration of potential assays into existing clinical systems and identification of appropriate patient subgroups for analysis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Molecular medicine is transforming modern clinical practice, from diagnostics to therapeutics. Discoveries in research are being incorporated into the clinical setting with increasing rapidity. This transformation is also deeply changing the way we practise pathology. The great advances in cell and molecular biology which have accelerated our understanding of the pathogenesis of solid tumours have been embraced with variable degrees of enthusiasm by diverse medical professional specialties. While histopathologists have not been prompt to adopt molecular diagnostics to date, the need to incorporate molecular pathology into the training of future histopathologists is imperative. Our goal is to create, within an existing 5-year histopathology training curriculum, the structure for formal substantial teaching of molecular diagnostics. This specialist training has two main goals: (1) to equip future practising histopathologists with basic knowledge of molecular diagnostics and (2) to create the option for those interested in a subspecialty experience in tissue molecular diagnostics to pursue this training. It is our belief that this training will help to maintain in future the role of the pathologist at the centre of patient care as the integrator of clinical, morphological and molecular information.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The subambient behavior of aqueous mannitol solutions is of considerable relevance to the preparation of freeze dried formulations. In this investigation the properties of 3% w/v mannitol solutions were investigated using differential scanning calorimetry (DSC), cold stage microscopy (CSM), and X-ray diffraction (XRD) to identify the thermal transitions and structural transformations undergone by this system. It was found that on cooling from ambient the system formed ice at circa -20°C while a further exotherm was seen at approximately -30°C. Upon reheating an endotherm was seen at circa -30°C followed immediately by an exotherm at circa -25°C. Temperature cycling indicated that the thermal transitions observed upon reheating were not reversible. Modulated temperature DSC (MTDSC) indicated that the transitions observed upon reheating corresponded to a glass transition immediately followed by recrystallization, XRD data showed that recrystallization was into the ß form. Annealing at -35°C for 40 min prior to cooling and reheating resulted in a maximum enthalpy being observed for the reheating exotherm. It is concluded that on cooling 3% w/v aqueous mannitol solutions an amorphous phase is formed that subsequently recrystallises into the ß form. The study has also shown that DSC, CSM, and XRD are useful complementary techniques for the study of frozen systems

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aminolevulinic acid (ALA) stability within topical formulations intended for photodynamic therapy (PDT) is poor due to dimerisation to pyrazine-2,5-dipropionic acid (PY). Most strategies to improve stability use low pH vehicles, which can cause cutaneous irritancy. To overcome this problem, a novel approach is investigated that uses a non-aqueous vehicle to retard proton-induced charge separation across the 4-carbonyl group on ALA and lessen nucleophilic attack that leads to condensation dimerisation. Bioadhesive anhydrous vehicles based on methylvinylether-maleic anhydride copolymer patches and poly(ethyleneglycol) or glycerol thickened poly(acrylic acid) gels were formulated. ALA stability fell below pharmaceutically acceptable levels after 6 months, with bioadhesive patches stored at 5°C demonstrating the best stability by maintaining 86.2% of their original loading. Glycerol-based gels maintained 40.2% in similar conditions. However, ALA loss did not correspond to expected increases in PY, indicating the presence of another degradative process that prevented dimerisation. Nuclear magnetic resonance (NMR) analysis was inconclusive in respect of the mechanism observed in the patch system, but showed clearly that an esterification reaction involving ALA and both glycerol and poly(ethyleneglycol) was occurring. This was especially marked in the glycerol gels, where only 2.21% of the total expected PY was detected after 204 days at 5°C. Non-specific esterase hydrolysis demonstrated that ALA was recoverable from the gel systems, further supporting esterified binding within the gel matrices. It is conceivable that skin esterases could duplicate this finding upon topical application of the gel and convert these derivatives back to ALA in situ, provided skin penetration is not affected adversely.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atherosclerosis has an inflammatory basis, with cytokines, cellular adhesion molecules and pro-inflammatory cells having important roles in the initiation and progression of this process. Interleukin (IL) 6, IL-10 and transforming growth factor (TGF) β have been proposed as important modulators of the atherosclerotic process, with IL-6 having a pro-inflammatory, atherogenic effect and IL-10 and TGF-β having anti-inflammatory, protective roles. The possible role of functional polymorphisms in the promoter regions of the IL-6, IL-10 and TGF-β genes in the susceptibility to ischaemic heart disease (IHD) was investigated in a well-defined Irish population using two recently described family-based tests of association. We genotyped 1,012 individuals from 386 families with at least one member prematurely affected with IHD. Using the combined transmission disequilibrium test (TDT)/sib-TDT and the pedigree disequilibrium test, no association between any of the IL-6 -174G/C, IL-10 -1082G/A and TGF-β -509C/T polymorphisms and IHD was found. Our data demonstrate that, in an Irish population, these polymorphisms are not associated with IHD. © Springer-Verlag 2004.